Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem J ; 481(5): 345-362, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38314646

RESUMEN

Adipogenesis, defined as the development of mature adipocytes from stem cell precursors, is vital for the expansion, turnover and health of adipose tissue. Loss of adipogenic potential in adipose stem cells, or impairment of adipogenesis is now recognised as an underlying cause of adipose tissue dysfunction and is associated with metabolic disease. In this study, we sought to determine the role of AMP-activated protein kinase (AMPK), an evolutionarily conserved master regulator of energy homeostasis, in adipogenesis. Primary murine adipose-derived stem cells were treated with a small molecule AMPK activator (BI-9774) during key phases of adipogenesis, to determine the effect of AMPK activation on adipocyte commitment, maturation and function. To determine the contribution of the repression of lipogenesis by AMPK in these processes, we compared the effect of pharmacological inhibition of acetyl-CoA carboxylase (ACC). We show that AMPK activation inhibits adipogenesis in a time- and concentration-dependent manner. Transient AMPK activation during adipogenic commitment leads to a significant, ACC-independent, repression of adipogenic transcription factor expression. Furthermore, we identify a striking, previously unexplored inhibition of leptin gene expression in response to both short-term and chronic AMPK activation irrespective of adipogenesis. These findings reveal that in addition to its effect on adipogenesis, AMPK activation switches off leptin gene expression in primary mouse adipocytes independently of adipogenesis. Our results identify leptin expression as a novel target of AMPK through mechanisms yet to be identified.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Adipogénesis , Animales , Ratones , Células 3T3-L1 , Adipocitos/metabolismo , Adipogénesis/genética , Tejido Adiposo/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Leptina/genética , Leptina/farmacología , Leptina/metabolismo
2.
J Cell Sci ; 137(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38206091

RESUMEN

The mammalian cell cycle alternates between two phases - S-G2-M with high levels of A- and B-type cyclins (CycA and CycB, respectively) bound to cyclin-dependent kinases (CDKs), and G1 with persistent degradation of CycA and CycB by an activated anaphase promoting complex/cyclosome (APC/C) bound to Cdh1 (also known as FZR1 in mammals; denoted APC/C:Cdh1). Because CDKs phosphorylate and inactivate Cdh1, these two phases are mutually exclusive. This 'toggle switch' is flipped from G1 to S by cyclin-E bound to a CDK (CycE:CDK), which is not degraded by APC/C:Cdh1, and from M to G1 by Cdc20-bound APC/C (APC/C:Cdc20), which is not inactivated by CycA:CDK or CycB:CDK. After flipping the switch, cyclin E is degraded and APC/C:Cdc20 is inactivated. Combining mathematical modelling with single-cell timelapse imaging, we show that dysregulation of CycB:CDK disrupts strict alternation of the G1-S and M-G1 switches. Inhibition of CycB:CDK results in Cdc20-independent Cdh1 'endocycles', and sustained activity of CycB:CDK drives Cdh1-independent Cdc20 endocycles. Our model provides a mechanistic explanation for how whole-genome doubling can arise, a common event in tumorigenesis that can drive tumour evolution.


Asunto(s)
Proteínas de Ciclo Celular , Ciclinas , Animales , Ciclo Celular , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Mitosis , Proteínas Cdc20/metabolismo , Mamíferos/metabolismo
3.
Mol Cell ; 83(22): 4062-4077.e5, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37977118

RESUMEN

Abnormal increases in cell size are associated with senescence and cell cycle exit. The mechanisms by which overgrowth primes cells to withdraw from the cell cycle remain unknown. We address this question using CDK4/6 inhibitors, which arrest cells in G0/G1 and are licensed to treat advanced HR+/HER2- breast cancer. We demonstrate that CDK4/6-inhibited cells overgrow during G0/G1, causing p38/p53/p21-dependent cell cycle withdrawal. Cell cycle withdrawal is triggered by biphasic p21 induction. The first p21 wave is caused by osmotic stress, leading to p38- and size-dependent accumulation of p21. CDK4/6 inhibitor washout results in some cells entering S-phase. Overgrown cells experience replication stress, resulting in a second p21 wave that promotes cell cycle withdrawal from G2 or the subsequent G1. We propose that the levels of p21 integrate signals from overgrowth-triggered stresses to determine cell fate. This model explains how hypertrophy can drive senescence and why CDK4/6 inhibitors have long-lasting effects in patients.


Asunto(s)
Proteína p53 Supresora de Tumor , Humanos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Ciclo Celular , División Celular , Proteína p53 Supresora de Tumor/genética , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo
4.
Br J Cancer ; 129(10): 1535-1545, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37608096

RESUMEN

Tumour dormancy and recurrent metastatic cancer remain the greatest clinical challenge for cancer patients. Dormant tumour cells can evade treatment and detection, while retaining proliferative potential, often for years, before relapsing to tumour outgrowth. Cellular quiescence is one mechanism that promotes and maintains tumour dormancy due to its central role in reducing proliferation, elevating cyto-protective mechanisms, and retaining proliferative potential. Quiescence/proliferation decisions are dictated by intrinsic and extrinsic signals, which regulate the activity of cyclin-dependent kinases (CDKs) to modulate cell cycle gene expression. By clarifying the pathways regulating CDK activity and the signals which activate them, we can better understand how cancer cells enter, maintain, and escape from quiescence throughout the progression of dormancy and metastatic disease. Here we review how CDK activity is regulated to modulate cellular quiescence in the context of tumour dormancy and highlight the therapeutic challenges and opportunities it presents.


Asunto(s)
Recurrencia Local de Neoplasia , Humanos , Recurrencia Local de Neoplasia/patología , Ciclo Celular/genética , División Celular , Puntos de Control del Ciclo Celular
5.
Nature ; 621(7980): 821-829, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37586410

RESUMEN

Endothelial cells line the blood and lymphatic vasculature, and act as an essential physical barrier, control nutrient transport, facilitate tissue immunosurveillance and coordinate angiogenesis and lymphangiogenesis1,2. In the intestine, dietary and microbial cues are particularly important in the regulation of organ homeostasis. However, whether enteric endothelial cells actively sense and integrate such signals is currently unknown. Here we show that the aryl hydrocarbon receptor (AHR) acts as a critical node for endothelial cell sensing of dietary metabolites in adult mice and human primary endothelial cells. We first established a comprehensive single-cell endothelial atlas of the mouse small intestine, uncovering the cellular complexity and functional heterogeneity of blood and lymphatic endothelial cells. Analyses of AHR-mediated responses at single-cell resolution identified tissue-protective transcriptional signatures and regulatory networks promoting cellular quiescence and vascular normalcy at steady state. Endothelial AHR deficiency in adult mice resulted in dysregulated inflammatory responses and the initiation of proliferative pathways. Furthermore, endothelial sensing of dietary AHR ligands was required for optimal protection against enteric infection. In human endothelial cells, AHR signalling promoted quiescence and restrained activation by inflammatory mediators. Together, our data provide a comprehensive dissection of the effect of environmental sensing across the spectrum of enteric endothelia, demonstrating that endothelial AHR signalling integrates dietary cues to maintain tissue homeostasis by promoting endothelial cell quiescence and vascular normalcy.


Asunto(s)
Células Endoteliales , Receptores de Hidrocarburo de Aril , Humanos , Animales , Ratones , Receptores de Hidrocarburo de Aril/metabolismo , Células Endoteliales/metabolismo , Intestinos , Transducción de Señal , Homeostasis , Ligandos
6.
Nature ; 619(7969): 257-258, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37407778
7.
Genome Biol ; 24(1): 128, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221612

RESUMEN

BACKGROUND: Therapy resistance in cancer is often driven by a subpopulation of cells that are temporarily arrested in a non-proliferative G0 state, which is difficult to capture and whose mutational drivers remain largely unknown. RESULTS: We develop methodology to robustly identify this state from transcriptomic signals and characterise its prevalence and genomic constraints in solid primary tumours. We show that G0 arrest preferentially emerges in the context of more stable, less mutated genomes which maintain TP53 integrity and lack the hallmarks of DNA damage repair deficiency, while presenting increased APOBEC mutagenesis. We employ machine learning to uncover novel genomic dependencies of this process and validate the role of the centrosomal gene CEP89 as a modulator of proliferation and G0 arrest capacity. Lastly, we demonstrate that G0 arrest underlies unfavourable responses to various therapies exploiting cell cycle, kinase signalling and epigenetic mechanisms in single-cell data. CONCLUSIONS: We propose a G0 arrest transcriptional signature that is linked with therapeutic resistance and can be used to further study and clinically track this state.


Asunto(s)
Genómica , Neoplasias , Humanos , Puntos de Control del Ciclo Celular , Ciclo Celular , Mutagénesis
8.
Elife ; 112022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36377847

RESUMEN

The time taken for cells to complete a round of cell division is a stochastic process controlled, in part, by intracellular factors. These factors can be inherited across cellular generations which gives rise to, often non-intuitive, correlation patterns in cell cycle timing between cells of different family relationships on lineage trees. Here, we formulate a framework of hidden inherited factors affecting the cell cycle that unifies known cell cycle control models and reveals three distinct interdivision time correlation patterns: aperiodic, alternator, and oscillator. We use Bayesian inference with single-cell datasets of cell division in bacteria, mammalian and cancer cells, to identify the inheritance motifs that underlie these datasets. From our inference, we find that interdivision time correlation patterns do not identify a single cell cycle model but generally admit a broad posterior distribution of possible mechanisms. Despite this unidentifiability, we observe that the inferred patterns reveal interpretable inheritance dynamics and hidden rhythmicity of cell cycle factors. This reveals that cell cycle factors are commonly driven by circadian rhythms, but their period may differ in cancer. Our quantitative analysis thus reveals that correlation patterns are an emergent phenomenon that impact cell proliferation and these patterns may be altered in disease.


Asunto(s)
Ritmo Circadiano , Mamíferos , Animales , Teorema de Bayes , Ciclo Celular , División Celular , Proliferación Celular
10.
Biophys J ; 121(12): 2312-2329, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35614852

RESUMEN

Balanced proliferation-quiescence decisions are vital during normal development and in tissue homeostasis, and their dysregulation underlies tumorigenesis. Entry into proliferative cycles is driven by Cyclin/Cyclin-dependent kinases (Cdks). Conserved Cdk inhibitors (CKIs) p21Cip1/Waf1, p27Kip1, and p57Kip2 bind to Cyclin/Cdks and inhibit Cdk activity. p27 tyrosine phosphorylation, in response to mitogenic signaling, promotes activation of CyclinD/Cdk4 and CyclinA/Cdk2. Tyrosine phosphorylation is conserved in p21 and p57, although the number of sites differs. We use molecular-dynamics simulations to compare the structural changes in Cyclin/Cdk/CKI trimers induced by single and multiple tyrosine phosphorylation in CKIs and their impact on CyclinD/Cdk4 and CyclinA/Cdk2 activity. Despite shared structural features, CKI binding induces distinct structural responses in Cyclin/Cdks and the predicted effects of CKI tyrosine phosphorylation on Cdk activity are not conserved across CKIs. Our analyses suggest how CKIs may have evolved to be sensitive to different inputs to give context-dependent control of Cdk activity.


Asunto(s)
Proteínas de Ciclo Celular , Quinasas Ciclina-Dependientes , Proteínas de Ciclo Celular/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Tirosina/metabolismo
11.
EMBO J ; 41(6): e110764, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35156716

RESUMEN

Inhibition of cyclin-dependent kinases Cdk4/6 is emerging as a useful anti-proliferative chemotherapy, but it remains unclear how durable inhibition of cancer cell proliferation is achieved to promote a long-lasting response in patients, or how toxicity is limited to cancer cells with minimal side effects. Two recent papers in The EMBO Journal investigating senescence induction following prolonged Cdk4/6 inhibitor treatment now reveal important insights into ways to increase anti-tumour effects of Cdk4/6 inhibition and to reduce therapy-induced side effects of senescence induction.


Asunto(s)
Quinasa 6 Dependiente de la Ciclina , Proteína p53 Supresora de Tumor , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Humanos
12.
J Immunol ; 207(12): 2976-2991, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34810221

RESUMEN

RUNX1 is a transcription factor that plays key roles in hematopoietic development and in hematopoiesis and lymphopoiesis. In this article, we report that RUNX1 regulates a gene expression program in naive mouse B cells that affects the dynamics of cell cycle entry in response to stimulation of the BCR. Conditional knockout of Runx1 in mouse resting B cells resulted in accelerated entry into S-phase after BCR engagement. Our results indicate that Runx1 regulates the cyclin D2 (Ccnd2) gene, the immediate early genes Fosl2, Atf3, and Egr2, and the Notch pathway gene Rbpj in mouse B cells, reducing the rate at which transcription of these genes increases after BCR stimulation. RUNX1 interacts with the chromatin remodeler SNF-2-related CREB-binding protein activator protein (SRCAP), recruiting it to promoter and enhancer regions of the Ccnd2 gene. BCR-mediated activation triggers switching between binding of RUNX1 and its paralog RUNX3 and between SRCAP and the switch/SNF remodeling complex member BRG1. Binding of BRG1 is increased at the Ccnd2 and Rbpj promoters in the Runx1 knockout cells after BCR stimulation. We also find that RUNX1 exerts positive or negative effects on a number of genes that affect the activation response of mouse resting B cells. These include Cd22 and Bank1, which act as negative regulators of the BCR, and the IFN receptor subunit gene Ifnar1 The hyperresponsiveness of the Runx1 knockout B cells to BCR stimulation and its role in regulating genes that are associated with immune regulation suggest that RUNX1 could be involved in regulating B cell tolerance.


Asunto(s)
Linfocitos B , Subunidad alfa 2 del Factor de Unión al Sitio Principal , Animales , Linfocitos B/metabolismo , Ciclo Celular/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Hematopoyesis , Ratones , Regiones Promotoras Genéticas
13.
Open Biol ; 11(11): 210125, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34784791

RESUMEN

The use of CDK4/6 inhibitors in the treatment of a wide range of cancers is an area of ongoing investigation. Despite their increasing clinical use, there is limited understanding of the determinants of sensitivity and resistance to these drugs. Recent data have cast doubt on how CDK4/6 inhibitors arrest proliferation, provoking renewed interest in the role(s) of CDK4/6 in driving cell proliferation. As the use of CDK4/6 inhibitors in cancer therapies becomes more prominent, an understanding of their effect on the cell cycle becomes more urgent. Here, we investigate the mechanism of action of CDK4/6 inhibitors in promoting cell cycle arrest. Two main models explain how CDK4/6 inhibitors cause G1 cell cycle arrest, which differ in their dependence on the CDK inhibitor proteins p21 and p27. We have used live and fixed single-cell quantitative imaging, with inducible degradation systems, to address the roles of p21 and p27 in the mechanism of action of CDK4/6 inhibitors. We find that CDK4/6 inhibitors can initiate and maintain a cell cycle arrest without p21 or p27. This work clarifies our current understanding of the mechanism of action of CDK4/6 inhibitors and has implications for cancer treatment and patient stratification.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Piperazinas/farmacología , Piridinas/farmacología , Epitelio Pigmentado de la Retina/citología , Línea Celular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Epitelio Pigmentado de la Retina/química , Epitelio Pigmentado de la Retina/efectos de los fármacos , Análisis de la Célula Individual
14.
Nat Commun ; 11(1): 3503, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32665547

RESUMEN

DNA replication timing is tightly regulated during S-phase. S-phase length is determined by DNA synthesis rate, which depends on the number of active replication forks and their velocity. Here, we show that E2F-dependent transcription, through E2F6, determines the replication capacity of a cell, defined as the maximal amount of DNA a cell can synthesise per unit time during S-phase. Increasing or decreasing E2F-dependent transcription during S-phase increases or decreases replication capacity, and thereby replication rates, thus shortening or lengthening S-phase, respectively. The changes in replication rate occur mainly through changes in fork speed without affecting the number of active forks. An increase in fork speed does not induce replication stress directly, but increases DNA damage over time causing cell cycle arrest. Thus, E2F-dependent transcription determines the DNA replication capacity of a cell, which affects the replication rate, controlling the time it takes to duplicate the genome and complete S-phase.


Asunto(s)
Cromatina/metabolismo , Replicación del ADN/fisiología , Western Blotting , Cromatina/genética , Daño del ADN/genética , Daño del ADN/fisiología , Replicación del ADN/genética , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Fase S/genética , Fase S/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
FEBS Lett ; 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32564372

RESUMEN

The coordination of cell proliferation with reversible cell cycle exit into quiescence is crucial for the development of multicellular organisms and for tissue homeostasis in the adult. The decision between quiescence and proliferation occurs at the restriction point, which is widely thought to be located in the G1 phase of the cell cycle, when cells integrate accumulated extracellular and intracellular signals to drive this binary cellular decision. On the molecular level, decision-making is exerted through the activation of cyclin-dependent kinases (CDKs). CDKs phosphorylate the retinoblastoma (Rb) transcriptional repressor to regulate the expression of cell cycle genes. Recently, the classical view of restriction point regulation has been challenged. Here, we review the latest findings on the activation of CDKs, Rb phosphorylation and the nature and position of the restriction point within the cell cycle.

16.
EMBO J ; 39(11): e104419, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32350921

RESUMEN

Two mitotic cyclin types, cyclin A and B, exist in higher eukaryotes, but their specialised functions in mitosis are incompletely understood. Using degron tags for rapid inducible protein removal, we analyse how acute depletion of these proteins affects mitosis. Loss of cyclin A in G2-phase prevents mitotic entry. Cells lacking cyclin B can enter mitosis and phosphorylate most mitotic proteins, because of parallel PP2A:B55 phosphatase inactivation by Greatwall kinase. The final barrier to mitotic establishment corresponds to nuclear envelope breakdown, which requires a decisive shift in the balance of cyclin-dependent kinase Cdk1 and PP2A:B55 activity. Beyond this point, cyclin B/Cdk1 is essential for phosphorylation of a distinct subset of mitotic Cdk1 substrates that are essential to complete cell division. Our results identify how cyclin A, cyclin B and Greatwall kinase coordinate mitotic progression by increasing levels of Cdk1-dependent substrate phosphorylation.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Ciclina A/metabolismo , Ciclina B/metabolismo , Mitosis , Proteína Fosfatasa 2/metabolismo , Proteína Quinasa CDC2/genética , Línea Celular , Ciclina A/genética , Ciclina B/genética , Humanos , Proteína Fosfatasa 2/genética
17.
Nat Commun ; 11(1): 1851, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32296040

RESUMEN

Genome stability relies on proper coordination of mitosis and cytokinesis, where dynamic microtubules capture and faithfully segregate chromosomes into daughter cells. With a high-content RNAi imaging screen targeting more than 2,000 human lncRNAs, we identify numerous lncRNAs involved in key steps of cell division such as chromosome segregation, mitotic duration and cytokinesis. Here, we provide evidence that the chromatin-associated lncRNA, linc00899, leads to robust mitotic delay upon its depletion in multiple cell types. We perform transcriptome analysis of linc00899-depleted cells and identify the neuronal microtubule-binding protein, TPPP/p25, as a target of linc00899. We further show that linc00899 binds TPPP/p25 and suppresses its transcription. In cells depleted of linc00899, upregulation of TPPP/p25 alters microtubule dynamics and delays mitosis. Overall, our comprehensive screen uncovers several lncRNAs involved in genome stability and reveals a lncRNA that controls microtubule behaviour with functional implications beyond cell division.


Asunto(s)
División Celular/genética , División Celular/fisiología , ARN Largo no Codificante/genética , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Humanos , Mitosis/genética , Mitosis/fisiología , Proteínas/genética , Interferencia de ARN/fisiología
19.
Nucleic Acids Res ; 46(12): 5950-5966, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29860520

RESUMEN

Loss-of-function (LOF) methods such as RNA interference (RNAi), antisense oligonucleotides or CRISPR-based genome editing provide unparalleled power for studying the biological function of genes of interest. However, a major concern is non-specific targeting, which involves depletion of transcripts other than those intended. Little work has been performed to characterize the off-target effects of these common LOF methods at the whole-transcriptome level. Here, we experimentally compared the non-specific activity of RNAi, antisense oligonucleotides and CRISPR interference (CRISPRi). All three methods yielded non-negligible off-target effects in gene expression, with CRISPRi also exhibiting strong clonal effects. As an illustrative example, we evaluated the performance of each method for determining the role of an uncharacterized long noncoding RNA (lncRNA). Several LOF methods successfully depleted the candidate lncRNA but yielded different sets of differentially expressed genes as well as a different cellular phenotype upon depletion. Similar discrepancies between methods were observed with a protein-coding gene (Ch-TOG/CKAP5) and another lncRNA (MALAT1). We suggest that the differences between methods arise due to method-specific off-target effects and provide guidelines for mitigating such effects in functional studies. Our recommendations provide a framework with which off-target effects can be managed to improve functional characterization of genes of interest.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Silenciamiento del Gen , Oligonucleótidos Antisentido , Oligonucleótidos , Interferencia de ARN , Transcripción Genética , Perfilación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Oligonucleótidos Antisentido/química , Proteínas/genética , ARN Largo no Codificante/metabolismo
20.
Proc Natl Acad Sci U S A ; 115(10): 2532-2537, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29463760

RESUMEN

Human cells that suffer mild DNA damage can enter a reversible state of growth arrest known as quiescence. This decision to temporarily exit the cell cycle is essential to prevent the propagation of mutations, and most cancer cells harbor defects in the underlying control system. Here we present a mechanistic mathematical model to study the proliferation-quiescence decision in nontransformed human cells. We show that two bistable switches, the restriction point (RP) and the G1/S transition, mediate this decision by integrating DNA damage and mitogen signals. In particular, our data suggest that the cyclin-dependent kinase inhibitor p21 (Cip1/Waf1), which is expressed in response to DNA damage, promotes quiescence by blocking positive feedback loops that facilitate G1 progression downstream of serum stimulation. Intriguingly, cells exploit bistability in the RP to convert graded p21 and mitogen signals into an all-or-nothing cell-cycle response. The same mechanism creates a window of opportunity where G1 cells that have passed the RP can revert to quiescence if exposed to DNA damage. We present experimental evidence that cells gradually lose this ability to revert to quiescence as they progress through G1 and that the onset of rapid p21 degradation at the G1/S transition prevents this response altogether, insulating S phase from mild, endogenous DNA damage. Thus, two bistable switches conspire in the early cell cycle to provide both sensitivity and robustness to external stimuli.


Asunto(s)
Ciclo Celular , Proliferación Celular , Daño del ADN , Modelos Biológicos , Ciclo Celular/genética , Ciclo Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Daño del ADN/genética , Daño del ADN/fisiología , Técnicas de Inactivación de Genes , Humanos , Mitógenos/genética , Mitógenos/metabolismo , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...